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Abstract .  The electron-electron scattering contribution to the thermal resistivity 
has been calculated for the alkali metals N a  and K for various pressures. We have used 
an isotropic Fermi-liquid model where we have corrected for the anisotropic scattering 
in terms of a ‘fractional Umklapp scattering’ function, A,  which is calculated using 
a pseudopotential band structure model. Our calculations give values of A that 
are N 100 times larger than the most commonly accepted values. As a result, this 
correction will give an enhancement of the electmn-electron scattering part of the 
thermal resistivity of N 5% compared with earlier calculations, where the ‘fractional 
Umklapp scattering’ function, A, is omitted. 

1. Introduction- 

Since Laubitz [l] managed to  separate the electron-electron scattering part of the 
thermal resistivity a t  high temperatures (above the Debye temperature, 0,) from 
experimental values of the total thermal and electrical resistivity, the interest in im- 
proved experiments and a deeper understanding of the electron-electron scattering 
contribution to  the thermal resistivity has increased [2-41. Simple arguments [2] 
show that  the temperature dependence of the electron-electron scattering part of the 
thermal resistivity is linear, Wee = BT, where B is a constant. Several different the- 
oretical approaches have been made to  determine Wee, and they give results of the 
same order as experiments, all showing a linear temperature dependence [5,6]. 

For an isotropic Fermi liquid it is possible to  find an expression for the coefficient 
B by solving the Boltzmann equation exactly [7-lo]. MacDonald and Geldart [5] 
used a modified Fermi-liquid theory, with Hedin’s [ll] simple GW approximation to  
describe the electron-electron interaction in alkali metals. Their results for Wee, given 
a t  room temperature (which is above OD), are within the experimental limits. We 
have previously used their model to  calculate the pressure dependence of We, a t  room 
temperature [12], neglecting the effect of Umklapp scattering. There are, of course, 
some uncertainties in Hedin’s model itself, which should be investigated, but to be able 
t o  compare different electron-electron interaction models within the thermal resistivity 
we first have to  include corrections like the Umklapp scattering in Wee. 

This can be taken care of in an approximate way following Lawrence and 
Wilkins [6], who calculated Wee for the anisotropic case using a variational method. 
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They managed to  separate the effect of Umklapp scattering into the so called A func- 
tion, which they called the ‘fractional Umklapp scattering’ function. In the same way, 
the A function can also be used to  include the anisotropic Umklapp scattering into the 
Fermi-liquid model of We,, as explained in [5]. It has been shown [5] that  the Umklapp 
scattering only gives a smaller correction to  Wee(P = 0) (of the order of 3-4%), but 
to  do a proper calculation on Wee(P) we still have to  investigate corrections like this 
one, convincing ourselves that they are small even for higher pressures. 

In this paper we present calculations on the pressure dependence of the A function 
for Na and K ,  and we also investigate the effects this correction will have on our 
earlier calculated results for Wee(P),  given in [12]. The calculation of the A function 
requires a pseudopotential band structure model a t  varying pressures, which will also 
be described. 

We will start  in section 2 with a short description of the theoretical models we 
have used in order to  calculate Wee and A .  The pseudopotential band structure model 
is described in section 3. Finally the results are presented and discussed in section 4,  
and we try to  draw some conclusions in section 5. 

2. The fractional Umklapp scattering function 

In this paper we will use the expression of the electron-electron scattering part of 
the thermal resistivity, Wee, for an isotropic Fermi liquid as given by MacDonald and 
Geldart [5], 

where (. . .) denotes a surface integral over the spherical Fermi surface, i.e. over the 
angles O and 4, which describes the relative location of four IC vectors (all situated 
on the Fermi surface) representing the two interacting electrons before and after the 
scattering event, as explained by e.g. Smith and Jensen [4]. W(O,4)  is the transition 
probability, m* is the quasiparticle mass and H(X) is an infinite series that  can be 
approximated to  M 1/2. This expression is exact for an electron gas and has then 
been modified by also taking account of the positive background, as explained by 
MacDonald and Geldart [5]. The A function can be included in this expression in 
an approximate way, and we can write the electron-electron scattering part of the 
thermal resistivity as [5] 

Wee(A) = CVee(A = 0)(1+ 3A/8)(1 + A/13)(1+ 3A/22)-’. (2) 

The ‘fractional Umklapp scattering’ function A has been defined by Lawrence and 
Wilkins [6] as 

A E $(lvl  + v 2  - ‘ug - W ~ ~ ~ W ) ( I V ~ ~ W ) - ~ .  (3) 

Here (. . .) is a fourfold integral over the Fermi surfaces (not necessarily spherical) for 
the four electrons participating in the scattering event. W is the transition probability, 
depending on the location of the four IC vectors representing the four electrons. W is 
usually not as simple a function as in the isotropic case, described in connection with 
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(1). vi  is the velocity of electron i, defined as the energy gradient, vk E ( l / f i ) V k f k ,  
as usual. A can then be interpreted as a variation of the velocity difference of the 
electrons over the Fermi surface, weighted by the transition probability W .  

The transition probability W is defined through the golden rule 

which is an average over spin states. 1 is here short for the state lkl) ,  representing 
one of the electrons before the scattering. V ( r , r ’ )  is a screened Coulomb poten- 
tial, describing the electron-electron interaction. In this paper we have chosen the 
Thomas-Fermi screened Coulomb potential, following the line taken by Lawrence and 
Wilkins [6]. It is, of course, in principle possible to choose a more realistic effective 
electron-electron interaction, and we will discuss this possibility later on. 

The wavefunctions will be written as a plane-wave expansion 

where Gj is a reciprocal lattice vector. Lawrence and Wilkins [6] used only the first 
two terms in this expansion. We have chosen in the following to use the expressions 
developed by MacDonald et a1 [13], who used 19 plane waves in the expansion. The 
wavefunction is an eigenfunction to a pseudopotential Hamiltonian, which will be 
described more thoroughly in the next section. 

The pseudopotential wavefunctions will then give us the Born approximation of 
the Thomas-Fermi interaction [13] 

where n’ satisfies G,, = G,,,, + G,,, - G,  - Gi and the sums are over all terms 
in the plane-wave expansion. The Thomas-Fermi screening wavevector is given by 
kTF = (16/3n2)r~’2kF, where kF is the free-electron Fermi wavevector. It is now clear 
from (3), why we call A the ‘fractional Umklapp scattering’ part. It consists of two 
fourfold integrals over the Fermi surface, which includes a momentum conservation 
condition from the Dirac delta function in (6) for different reciprocal lattice vectors 
Gi. We can move the sum over the reciprocal lattice vectors Gi outside the integral 
in the numerator, and calculate the A function for each Gi-vector separately, 

A = C A ~  
i 

(7) 

where Ai indicates that k3 + k4 - kl - k, = Gi in the numerator. When Gi = 0 
there is normal scattering, and when Gi # 0 we have Umklapp scattering. 
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3. The pseudopotential method 

The pseudopotential method has the advantage that we do not have t o  deal with the 
core eigenfunctions explicitly. The valence electron eigenfunctions are expanded into 
plane waves, which makes it possible to  calculate the matrix elements of the Thomas- 
Fermi potential within the Born approximation in a very straightforward manner, as 
explained in the last section. 

We can write the one-electron Schrodinger equation as 

where Ik) is the pseudopotential eigenfunction (5) representing the valence electrons, 
but not necessarily orthogonal to the core wavefunctions. The pseudopotential is 
usually a non-local function, V p s ( ~ ,  T ’ ) .  The eigenvalues 6k are exact, i.e. they are also 
eigenvalues to  the exact valence wavefunctions, orthogonal to all core wavefunctions. 
The Schrodinger equation can be solved both empirically and ab initio, and some of 
the commonly used methods are described in [14,15]. 

The model we use was developed by Srivastava, and is based on his earlier work on 
semiconductors [16,17]. We are looking for a self-consistent solution to  the Schrodinger 
equation, and for that  purpose we will have to  solve a set of eigenvalue equations 

where Ci(k) are the coefficients from the plane-wave expansion (5) .  
By solving these eigenvalue equations with a suitable screened starting pseudopo- 

tential, we get a first approximation for the eigenvalues and coefficients of the eigen- 
functions. These are then used in the next iteration. 

The starting pseudopotential is then replaced by an effective potential which will 
be on the form 

vps(q) = wian(q)s(q) -k vH(q) + v x c ( q )  (10) 

where q = G, - Gj and S(q) is the structure factor. 
The ion potential used here, wian(q) ,  is given by Bachelet el a1 [15]. They have 

developed a general method to  calculate norm-conserving pseudopotentials for atoms, 
which they present in the form of analytical expressions with the parameters given in 
table form. Their calculations are for single atoms, but the transferability to  other 
systems, like crystals, is fulfilled through a transferability condition, as described 
in [15,18], which is characteristic for norm-conserving pseudopotentials. 

In (10) we have also included a Hartree potential 

vH(q) = 4Te2P(q)/lq12 (11) 

with the charge density given as P ( T )  = Ck 1(kIk)l2 in real space, where the sum 
is over all occupied states, which is then Fourier transformed. The screening part 
of the potential consists of an exchange-correlation part as described by Hedin and 
Lundqvist [ 191, 

V x c ( q )  = P(P)VX(P)  (12) 
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where the exchange part is given by 

with a = 2/3. The correction for the correlation, p ( p ) ,  is given in a parametrized 
form 

This effective potential is then added to  the starting potential giving a new trial 
potential of the form Krial = CKtart + (1 - C)V,, where the mixing coefficient C is 
chosen in a suitable way [16]. This new trial potential is then used to  solve (9) once 
again. The whole procedure is then repeated until we get a self-consistent solution. 
In the procedure toward self-consistency four special IC vectors have been used. 

We have used this pseudopotential model to  calculate eigenvalues and eigenfunc- 
tions for N a  and K, for k vectors equally spaced in 1/48th of the Brillouin zone. The 
calculations have been performed for a number of different volumes of the Wigner-Seitz 
cell, corresponding to different pressures, a t  room temperature. Both Na and K will 
then form a BCC structure. The ion potential used in (10) is given in a parametrized 
form only a t  zero pressure, and we therefore treat it as a frozen potential. 

Sodium in particular is a very simple metal, in the sense that it has an almost 
spherical Fermi surface. We will assume that the Fermi surface is exactly spherical 
in the calculation of the A function, which makes it sufficient to  solve the pseudo- 
potential equations a t  L = k,, where k, is the free-electron Fermi wavevector. The 
eigenfunctions and eigenvalues of the pseudopotentid equation have been calculated at  
160 equally spaced k points over the spherical Fermi surface in 1/48t8h of the Brillouin 
zone for sodium. In the case of potassium we have chosen to  calculate the eigenfunc- 
tions and eigenvalues a t  342 k points equally spaced in the outer part of 1/48th of 
the Brillouin zone, surrounding the free-electron spherical Fermi surface. I t  is then 
possible t o  calculate the eigenfunctions a t  the real distorted Fermi surface by using 
linear interpolation, since the real Fermi surface is only slightly distorted from the 
spherical one. 

We have compared our results for the eigenvalues a t  some symmetry points, with 
the band structure calculations we made in connection with the calculation of Wee(A = 
0 , P )  in [12], using the LMTO (linear muffin-tin orbital) method [20]. We have also 
compared with results for the eigenvalues given by Dagens and Perrot [all using the 
APW (augmented plane wave) method, and with calculations made by Ham [22]. The 
comparison is presented in table 1 for Na and in table 2 for K. 

What  can be observed is that the Fermi energy is 5-10 % higher with our pseu- 
dopotential calculation. The difference is the same even for higher pressures when 
we compare with the results given by the LMTO method (not shown in the tables). 
This systematic difference could be due to  the small number of k points (four spe- 
cial points) in the irreducible Brillouin zone that  is being used in the self-consistency 
procedure. Increasing the number of k points, would increase the computer time enor- 
mously (since we are dealing with matrices of the order of 100 x 100). In the LMTO 
method this problem never occurs. There we used 285 k points in the irreducible 
Brillouin zone, and this was made possible through the smaller dimensionality of the 
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Table 1. The eigenvalues of Na at some symmetry points and the Fermi energv, EF,  
calculated by different band structure methods. They are all given in units of Ryd. 

Pseudopotential LMTO [12] Ham [22] A P W  [17] 

rl 0.0 
r 2 5 1  1.082 
Nil 0.273 
N1 0.319 
9 0.418 
Pi 0.540 
Hi2 0.565 
Hi5 0.568 

EF 0.260 

0.0 
1.137 
0.292 
0.317 
0.438 
0.533 
0.563 
0.602 

0.235 

0.0 
1.028 
0.296 
0.313 
0.437 
0.508 
0.573 
0.579 

0.235 

0.0 
1.101 
0.291 
0.332 
0.434 
0.577 
0.558 
0.602 

Table 2. The eigenvalues of K at some symmetry points and the Fermi energy, E F ,  
calculated by different band structure methods. They are all given in units of Ryd. 

Pseudopotentid LMTO [12] Ham [22] A P W  (171 

rl 0.0 
r251 - 

N I  0.180 
N1i 0.199 
P4 0.262 
Pi 0.370 
Hi2 0.326 
Hi5 0.378 

0.0 
0.502 
0.189 
0.213 
0.273 
0.375 
0.280 
0.433 

0.0 0.0 
0.477 0.545 
0.187 0.201 
0.219 0.212 
0.275 0.275 
0.356 0.418 
0.291 0.290 
0.417 0.432 

EF 0.167 0.159 0.159 - 

secular equations being solved (9 x 9 matrices) [20]. The difference could also be due 
to the pseudopotential model itself not giving the correct band structures. 

The Fermi surface will also be more irregular in the pseudopotential case. This 
can most easily be seen in the (110) direction (denoted by N),  where the Fermi energy 
is closer to the energy value at  the symmetry point. This will lead to  a Fermi surface 
being closer to  the Brillouin zone, and consequently differ more from the spherical 
shape than for the other band structures. The PeaSon for this irregularity is probably 
the same as for the deviation of the Fermi energy. 

4. The pressure dependence of A and W,,(A) 

We have calculated the ‘fractional Umklapp scattering’, A(P),  for the alkali metals 
Na and K in the pressure ranges 0-30 G P a  and 0-12 GPa  respectively, using the 
equations described in section 2. We have then included the A function into the 
thermal resistivity, Wee(A = 0,  P )  (as given in [12]), according to  (2) .  The results are 
presented in figures 1-3 and we will discuss them independently for N a  and I<. 

4.1. Results for sodium 

Sodium is a simple metal to  study, since i t  has an almost spherical Fermi surface. This 
will be true even for higher pressures (see Lundmark [12]), and we can argue that i t  
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P(GPa) 

Figure 1. The fractional Umklapp Scattering function A,  given in (3), as a function 
of pressure. The circles are for sodium, the crosses are for potassium with a spherical 
Fermi surface and the squares are for potassium with our calculated Fermi surface. 

1 

0 1  1 I 1 
0 10 20 30 

P(GPa) 

Figure 2. The electron-electron scattering part of the thermal resistivity as a 
function of pressure for sodium. The full curve is without the fractional Umklapp 
scattering, Wee(A = 0), as calculated in [12]. The crosses are the corrections when 
the fractional Umklapp scattering is included, Wee(A) (2). 

is a good approximation to  work with a completely spherical Fermi surface with a 
free-electron Fermi wavevector, k, = 0.62 (in units of 27r/a, where a is the length of 
the BCC unit cell). This will give us a free-electron Fermi energy of E, = 0.231 Ryd at  
P = 0 GPa .  We have calculated A for three pressures: 0 ,  5.5 and 26 GPa  respectively. 
Sodium will form a BcC structure in this range, and the equation of state is taken 
from Aleksandrov et a1 [23]. 

The A function, given in (3), contains two integrals over four k vectors on the 
Fermi surface. As a result we then have to  work with 12-dimensional integrals in 
the general case. Since we have restricted ourselves to  spherical Fermi surfaces, it is 
possible to reduce the number of dimensions in the integrals t o  five, as explained by 
MacDonald e t  a1 [13]. They are calculated using the Gaussian quadrature method. 
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Figure 3. The electron-electron scattering part of the thermal resistivity as a 
function of pressure for potassium. The full curve is without the fractional Umklapp 
scattering, Wee(A = 0), as calculated in [12]. The crosses are the corrections when 
the fractional Umklapp scattering is included, Wee(A) (2 ) .  

For each term in the summation of the integral we pick out four 6 vectors on the 
spherical Fermi surface, representing the two electrons before and after the scattering 
event. For each 6 vector we calculate the corresponding eigenfunction from those given 
in the pseudopotential calculation, by a linear interpolation in three dimensions. The 
coefficients in the expansion of the eigenfunction in terms of plane waves are then used 
in the calculation of the Thomas-Fermi matrix elements (6). The 6 vectors have to  
fulfil the requirement of conservation of momentum, I C ,  + I C ,  + Gi = I C ,  + I C , .  This is 
only possible for the first four shells for a BCC structure, i.e. for the reciprocal lattice 
vectors that  span the first three Brillouin zones and for the case of normal scattering, 
where G = ( O , O , O ) ,  as shown by MacDonald et a1 [13]. For symmetry reasons, all 
G vectors in the same shell will give an equal contribution to  A, so we only have to  
calculate the contribution from each shell once. This will give us four terms in the 
summation of A (7). In practice, we choose three of the 6 vectors independently in 36 
equally spaced directions all over the Fermi surface, and the fourth 6 vector is then 
specified by momentum conservation. This will give us a total of 5184 terms summing 
up for the integrals in Ai for each shell or Gi vector. 

In the calculation of the matrix elements in (6), we have limited ourselves to 19 
terms in the plane-wave expansion of the pseudopotential eigenfunctions (i.e. the first) 
three shells), even though the complete set of plane waves contains 100-200 terms 
in the self-consistent pseudopotential calculation. We have also performed some tests 
including 43 terms from the plane-wave expansion in the matrix elements (i.e. including 
the fourth shell). The change in the A function will then be less than lo%, and since 
the computer time will increase enormously we will settle with 19 terms. 

The velocity is defined as the energy gradient on the Fermi surface. We have 
only solved the pseudopotential eigenvalue equation on the spherical Fermi surface for 
sodium, which means that we do not have access to  the energy gradient. For a local 
pseudopotential we can calculate the velocity using (9) 
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given by MacDonald e2 a1 [13], since the local pseudopotential matrix elements are 
independent of I C .  Since sodium has an almost spherical Fermi surface it is a good 
approximation to assume local pseudopotentials, and use the above expression for the 
velocity. 

The calculated values of A are shown in figure (1). A is between 0.1 and 0.2, and 
is increasing with pressure. This is what we could expect, since an increasing pressure 
will give a more distorted Fermi surface (compared with the free electron case). A 
spherical Fermi surface will give no contribution to  A in the normal scattering case, 
since the velocity difference then equals 0. The more distorted the Fermi surface, the 
larger velocity difference and consequently the larger A will be. When we include 
A in the calculation of Wee(P),  according to (2), it will bring about a correction to  
We,(A = 0, P )  of 3-6%, as shown in figure 2. The only available experimental results 
so far are for P = 0 GPa, and for sodium we have Wee(P = O)/T = (110f 60) x 
m W-' [24], which is in good agreement with our results. 

4.2. Results for K 
We have calculated A ( P )  for five different pressures: 0, 3, 6, 9 and 12 GPa respectively. 
Potassium forms a BCC structure in this range, with a phase transition at  12 GPa to 
FCC. The equation of state is taken from Liu [25]. 

Potassium will also have an almost spherical Fermi surface at  atmospheric pressure. 
But for increasing pressures (i.e. decreasing volume of the unit cell) the Fermi surface 
will be quite distorted, and for P = 10 GPa the Fermi surface in the (110) direction 
is almost touching the Brillouin zone (see Lundmark [12]). This means that it is no 
longer a good approximation to assume a spherical Fermi surface. 

When the Fermi surface is no longer spherical it is not possible to simplify the 
12-dimensional integrals in A in the same way as we did for sodium. Nevertheless, 
we have chosen to proceed from the five-dimensional integrals, but ignoring the exact 
momentum conservation condition. We start with picking out the k vectors in the same 
directions as for sodium, fulfilling the momentum conservation. But then we correct 
their length to  equal the length of the true Fermi wavevector in the same direction. It 
is these k vectors we use to  determine the corresponding eigenfunctions to be used in 
the matrix elements of the Thomas-Fermi potential (6). The differences in the length 
of the k vectors on the Fermi surface is < 1.5% in the whole pressure range, where the 
largest differences are in the small surroundings of the symmetry directions. Since the 
number of k vectors in the symmetry directions is relatively small, we can conclude 
that the deviations from the momentum conservation in general will be very small. 

The pseudopotential eigenvalue equation has been solved for k vectors in the outer 
part of 1/48th of the Brillouin zone surrounding the free-electron spherical Fermi 
surface. This makes it possible to use the definition of the velocity as the energy 
gradient, and calculate the velocity for each k vector on the distorted Fermi surface. 

To see how much the non-sphericity will influence the A function, we have also 
calculated A(P) with a spherical free-electron Fermi surface (with EF = 0.150 Ryd at  
P = 0 GPa), in the same way as for sodium. We show the results for the A function 
in figure 1, where we include the calculations with the real distorted Fermi surface and 
with a spherical free-electron Fermi surface. Since our value of the Fermi energy is 
probably too high, as discussed in connection with the pseudopotential calculation, we 
get a Fermi surface that is too large. This indicates that our values of A are probably 
overestimated, and a proper value of A should be somewhere between our results and 
the results given by a spherical free-electron Fermi surface. The values of A ( P )  for 
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the spherical free-electron Fermi surface are increasing with pressure, just as in the 
case of sodium, while the distorted Fermi surface first gives an increasing A(P) which 
then reaches a maximum and decreases with increasing pressure. 

Including our A(P) in the calculation of Wee(P) will give a correction to  Wee(A = 
0 , P )  (which is given in [12]), as shown in figure 3. The correction is calculated 
using (2), and is between 4-5%. We still have the same shape of Wee(P), with a minima 
between 3 and 6 GPa, as discussed more thoroughly in [12]. The experimental value 
for potassium a t  P = 0 GPa is Wee(P = O)/T = (270 k 50) x m W-' [26]. We 
can conclude that  both our calculated values of Wee(A = 0, P = 0) and Wee(A, P = 0) 
are within these limits. 

4.3. Comparison with other calculations 

The fractional Umklapp scattering function, A, has been calculated by several authors 
for different metals. The alkali metals have been delt with by Lawrence and Wilkins [6] 
and by MacDonald et a1 [13]. They have both calculated A(P = 0), and we compare 
their results with ours in table 3. 

Table 3. The A function as calculated by different authors for P = 0 GPa. 
In the first four columns the same local pseudopotential has been used, given by 
Ashcroft [29]. In the third and fourth column, we have used 2 and 19 plane waves, 
respectively. The non-local pseudopotential is described in section 3. 

This paper 

Local Non-local 

MTG (131 LW [6] 2 P W  19pw 

Na 4.4 x lo-' 0.015 0.011 0.032 0.104 
K 1.6 x 0.06 0.044 0.086 0.174 

Lawrence and Wilkins [6] are only using two plane waves in their expansion of 
the pseudo-wavefunction. The first term in the expansion, with G, = 0, is always 
the dominant one as long as the k vector is well inside the Brillouin zone. Since this 
is the case for P = 0 (with an almost spherical Fermi surface) for both Na and K,  
they are only keeping the second term in the wavefunction for one of the k vectors 
in the matrix elements of the Thomas-Fermi potential (6). They also neglect the 
exchange term in the calculation of the transition probability W ,  (4), arguing that  
it will only give a minor contribution. They use a local pseudopotential as given 
by Ashcroft [29], and calculate the integrals over a spherical Fermi surface. To take 
account of the reduced number of k vectors that  fulfil momentum conservation in the 
case of Umklapp scattering, they multiply A with a factor representing this reduction. 

MacDonald e t  a1 [13] use 19 plane waves in the expansion of the pseudo- 
wavefunction. They also work with local pseudopotentials given by different authors. 
To get the coefficients in the plane-wave expansion they solve the eigenvalue equa- 
tion (9). They integrate over a spherical Fermi surface, where they implicitly reduce 
the number of possible k vectors in the Umklapp scattering case in an exact manner. 

In our calculation of A we use the same method as described by MacDonald et 
al. The  only difference is that  we use a self-consistent, non-local pseudopotential as 
explained in section 3, making it possible also to  include a pressure dependence in the 
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A function. As a test, we have also calculated A with the same local pseudopoten- 
tial [27] as Lawrence and Wilkins and MacDonald et a1 , using both two and 19 plane 
waves in the pseudc-wavefunction. Since we are using exactly the same equations as 
MacDonald et all we should get exactly the same results as them with 19 plane waves. 
The results are given in the fourth column of table 3.  It is seen that our values of A 
are a factor of - 50 times larger than those given by MacDonald et  al, and slightly 
larger than those given by Lawrence and Wilkins. The results with two plane waves 
(in the third column) give smaller values of A than with 19 plane waves, and they 
are slightly smaller than the results given by Lawrence and Wilkins. MacDonald el 
a1 argue that  including more terms in the plane-wave expansion of the wavefunctions 
will lower the coefficients in the expansion, and consequently also lower the terms in 
the matrix elements in (6). The number of terms in the matrix elements is of course 
increasing, but according to  MacDonald et a1 they will add incoherently, ending up 
with smaller matrix elements, compared with the case of Lawrence and Wilkins. They 
also argue that Lawrence and Wilkins’ approximation for the reduction of the number 
of available t vectors in the Umklapp scattering case should be lower (- 3-4 times). 
These two arguments would then explain why they get much lower values of A than 
Lawrence and Wilkins. 

We have not seen this in our calculations. Even though the increasing number of 
plane waves in the wavefunction expansion inevitably will lower the coefficients, we 
do not see the same amount of incoherence in adding up the different terms in the 
matrix elements. The increasing number of terms will instead give us larger matrix 
elements, ending up with a larger value of A. This is most easily seen by comparing 
the values of A with two and 19 plane waves. Since our values with two plane waves 
are quite close to  those given by Lawrence and Wilkins, their approximation for the 
phase space reduction seems to  agree quite well with our calculations. We therefore 
think that i t  is still possible that Lawrence and Wilkins approximations are of the 
right order. 

Finally, we should comment on our results for A when using a non-local pseu- 
dopotential, given in the last column of table 3. They are increasing for both N a  and 
K ,  compared with the case of a local pseudopotential. This is also what MacDon- 
ald et a1 arrived a t ,  and the explanation is that the local pseudopotential is given as 
the backscattering potential, while the non-local potential generally is much stronger, 
indicating a stronger electron-electron interaction (cf their figure 3). 

4.4. T h e  electron-electron scattering part of the  electrical resist ivity 

Another way of comparing the different calculations of A with experiments would be 
to  calculate the electron-electron scattering part of the electrical resistivity, pee. I t  can 
be shown [6] that  pee is linearly dependent on A ,  and is consequently a much more 
sensitive function of A than Wee, Therefore, we would imagine that a comparison 
of theoretical and experimental values of pee immediately would tell us a t  least the 
magnitude of A.  Unfortunately, it is not that  simple. The electron-electron scattering 
part of the electrical resistivity is - T 2  and will only give a minor contribution to  the 
total electrical resistivity. The dominant term is the electron-phonon scattering part ,  
pep. At high temperatures (T > e,), but still far below the Fermi temperature TF, 
when the quantization of the phonons is irrelevant, it can be shown that p oc T (see 
Ziman [28]). When the temperature is decreasing so is the electrical resistivity, but its 
temperature dependence is changed when it is below 0,. The contribution from the 
quantized phonons will instead now give a temperature dependence pep oc T5. The  

, e? 
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electron-electron and electron-phonon scattering part will be of the same size only 
for very low temperatures, T 5 2 K .  There is also a contribution from a temperature- 
independent electron-impurity scattering part, which will dominate in this region, with 
a size of the order of 104pee. One therefore needs very accurate measurements at very 
low temperatures to  be able to identify the electron-electron scattering part. 

When we calculate the electron-electron scattering part of the electrical resistivity 
(or of the thermal resistivity) at these low temperatures we also have to take account 
of a phonon exchange term. This is beyond the scope of this paper, but it has been 
done by MacDonald e l  a1 [13], and they argue that the phonon exchange term will 
dominate over the direct Coulomb electron-electron scattering at  low temperatures. 

This is not necessarily the case in our calculations. MacDonald et a1 add a phonon- 
exchange scattering function to the direct Coulomb interaction in the transition prob- 
ability W in an approximate way, both within pee/A - Wee(A = 0) where the tran- 
sition probability W is given by the Fermi-liquid model, and in the A function itself. 
This will give an enhancement of A of a factor of 100 in the case of N a  and a factor 
of 10 in the case of K ,  which can be seen by comparing the first columns in tables 3 
and 4. These new corrected values of A are still lower than our values, with only 
Coulomb scattering included. Therefore we believe that the same kind of correction 
for the phonon-exchange scattering in our calculations would not give the same drastic 
increase in A. 

Table 4. The electron-electron scattering part of the electrical resistivity at P = 
0 GPa as given by different authon in units of pee/T2 (low1’ fl m K-’). The values 
given by [13] and our values are calculated using (16). The experimental values are 
from [29] for Na and also from [30] for K. MacDonald e t  a /  [13] have also included a 
phonon-exchange correction to their values, as explained in the text. 

.A ~ 3 1  P e e / T 2  p e e / T 2  P e e / T 2  P e e l T 2  
Phonomexchange corr. [13] [GI This paper Experiment 

Na 0.035 
K 0.0207 

140 15 140 180-195 
170 170 600 55-290 

We have calculated pee without including the phonon-exchange term, from the 
expression 

pee = 0.8L,TWee(A = 0)A 1 + - ( l t 4 )  

where Lo is the Lorentz number and Wee(A = 0) is from [12]. The same expression 
has been used by MacDonald e t  a1 [13], also including a phonon-exchange term, both 
in A and in Wee(A = 0). The results for pee/T2 are presented in table 4 and compared 
with experiment. 

5 .  Conclusions 

We have calculated the fractional Umklapp scattering function A for Na and K as a 
function of pressure. The values of A(P = 0) turned out to be N 100 times larger than 
the commonly accepted values given by MacDonald et  a1 [13], but of almost the same 
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order as the values given by Lawrence and Wilkins [SI. We have then inserted this 
correction into the electron-electron scattering part of the thermal resistivity, Wee. As 
expected, A only has a minor effect on Wee, giving an increase of - 5% in the whole 
pressure range. The results at  P = 0 GPa have been compared with experiment, and 
Wee(A = 0), as well as Wee(A), is within the experimental limits. 

In order to improve the results for the electron-electron scattering part of the 
thermal resistivity we should concentrate on the isotropic part, i.e. Wee(A = 0). We 
used a Fermi-liquid model to calculate Wee(A = 0), where the electron-electron in- 
teraction was formulated in terms of Landau parameters, given by Hedin [ll]. He 
calculated these parameters in the G W  approximation using the free-electron Green 
function and the Coulomb interaction screened with the RPA dielectric function. How- 
ever, Northrup e t  a1 [31] have shown that including exchange and correlation in the 
dielectric function and using a quasiparticle Green function has a very significant effect 
on the bandwidth of alkali metals and give results in good agreement with experiment. 
Kukkonen and Smith [32] have arrived at similar conclusions. It would be very inter- 
esting to  investigate how this improved quasiparticle band structure would affect on 
the thermal resistivity. 

We therefore conclude that a correct description of the electron-electron interac- 
tion is the most important part in a theoretical treatment of the electron-electron 
scattering part of the thermal resistivity. 

Acknowledgments 

I am very grateful to Professor Arne Claesson for his support and continuous encour- 
agement during this work. I would also like to thank Dr G P Srivastava for giving me 
the opportunity to use his pseudopotential band structure programs. 

References 

[l] 
[2] 
[3] 
[4] 
[5) 
[6] 
[7] 
[8] 
[9] 

[lo] 
[ll] 
[12] 
[13] 
[14] 

[15] 
[16] 
[17] 
(181 
[19] 
1201 
[21] 

Laubitz M J 1970 Phys.  Rev. B 2 2252 
Kaveh M and Wiser N 1984 Adv. Phys.  33 257 
van Vucht R J M, van Kempen H and Wyder P 1985 Rep. Prog. Phys. 48 853 
Smith H and Jensen H H 1989 Transport Phenomena (Oxford: Oxford University Press) 
MacDonald A H and Geldart D J W 1980 J. Phys. F: Met. Phys. 10 677 
Lawrence W E and Wilkins J W 1973 Phys. Rev. B 7 2317 
Jensen H H, Smith H and Wilkins J W 1968 Phys.  Lett. 27A 532 
Jensen H H, Smith H and Wilkins J W 1969 Phys. Rev. 185 323 
Brooker G A and Sykes J 1968 Phys. Rev. Lett. 21 279 
Sykes J and Brooker G A 1970 Ann. Phys. ,  NY 56 1 
Hedin L 1965 Phys.  Rev. 139 A796 
Lundmark L 1988 J. Phys. F: Met. Phy8. 18 1855 
MacDonald A H, Taylor R and Geldart D J W 1981 Phys. Rev. B 23 2718 
Heine V 1970 Sol id  State Physics vol 24 (New York: Academic) p 1 
Cohen M L and Heine V 1970 Sol id  State Phys. 24 
Bachelet G B, Hamann D R and Schliiter M 1982 Phys. Rev. B 26 4199 
Srivastava G P private communication 
Srivastava G P 1982 J .  Phys. C: Sol id  State Phys.  15 707 
Topp W C and Hopfield J J 1974 Phys. Rev. B 7 1295 
Hedin L and Lundqvkt B I 1971 J. Phys. C: Sol id  State Phys. 4 2064 
Skriver H L 1984 The LMTO Method (Berlin: Springer) 
Dagens L and Perrot F 1973 Phy8. Rev. B 8 1281 



9322 L Lundmark 

Ham F S 1962 Phys. Rev. 128 82 
Aleksandrov I V ,  Kashinskii V N ,  Makarenko I N and Stishov S M 1982 Pis’ma Zh. Eksp.  Teor. 

Cook J G, van der Meer M P and Laubitz M J 1972 Can. J .  Phys. 50 1386 
Liu 1986 J .  Phys. Chem. Solids 4 7  1067 
Cook J G 1979 Can. J .  Phys. 57 1216 
Ashcroft N W 1968 J .  Phys. Chem. 1 232 
Ziman J M 1960 Electrons and Phonons (Oxford: Oxford University Press) 
Levy B, Sinvani M and Greenfield A J 1979 Phys. Rev. Lett. 43 1822 
van Kempen H, Lass J S, Ribot J H J M and Wyder P 1976 Phys. Rev. Lett. 37 1574 
Rowlands J A, Duvvury C and Woods S B 1978 Phys. Rev. Lett. 40 1201 
Northrup J E, Hybertsen M S and Louie S G 1987 Phys. Rev. Lett. 59 819 
Kukkonen C A and Smith H 1973 Phys. Rev. B 8 4601 

Fir. 36 336 (Engl. Transl. 1982 J E T P  Lett. 36 411) 


